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Abstract. Analytic formulae are presented for the two-loop perturbative QCD corrections to b → c decay
at the zero recoil point, which are required for the extraction of |Vbc| from measurements of exclusive
B → D∗lν decays. The results are in agreement with those in [8,9]. Some comments on the numerical
evaluation of the diagrams involved are made.

1 Introduction

The magnitude of the Kobayashi-Maskawa matrix element
Vcb can be determined experimentally by observing the de-
cays of B mesons produced in e+e− collisions. In partic-
ular, one method requires the measurement of the rate of
the exclusive semileptonic decay B → D∗lν (see, eg., [1]).
From the decay rate, measured at the zero recoil point, i.e.,
in the special kinematical situation where the D∗ is pro-
duced at rest in the B rest frame, one can then extract the
value of |Vcb|. This method has been used by experiments
where B mesons are produced on the Υ (4S) resonance [2]
and on the Z resonance [3]. The statistical and system-
atic errors are currently of the order of 5%. However, in
the future, with the CESR collider at Cornell running at
increased luminosity, the asymmetric B factories at KEK
and SLAC coming into operation, and further B-physics
experiments to be conducted at the hadron accelerators
Tevatron, HERA and LHC (see, e.g., [4]), the errors are
expected to come down to around 1% or less [5]. Thus, it is
important that the theoretical input, that is needed to ex-
tract |Vcb| from the measured decay rates, be known with
equal precision. The purpose of this paper is to present
one component of that theoretical input, namely the sec-
ond order perturbative QCD corrections to the decay of a
b quark into a c quark at zero recoil. The other part of the
theoretical input consists of non-perturbative corrections
which are described by an expansion in the heavy quark
masses mb and mc. For a review of heavy quark theory
and further references, see, e.g., [6].

The reason for using the zero recoil point is that at that
point, the non-perturbative contributions are suppressed
by a factor of Λ2

QCD/m2
c , because of an additional sym-

metry that exists in the infinite quark mass limit. At the
same time, however, the zero recoil condition simplifies
the kinematics of the decay b → cW to such an extent,
that a complete analytical calculation of the perturbative
corrections at the two-loop level becomes feasible.

At tree level, the amplitude for b → cW is proportional
to ū(c)γµ (1 − γ5)u(b). In higher orders, this gets modified
into ū(c)γµ (ηV − ηAγ5)u(b), where ηV,A are given by per-
turbation series in αs. (Only ηA enters the expression for
B → D∗lν.) At zero recoil, no other Lorentz structures
appear. The order αs contributions were calculated in [7].
The Feynman diagrams that contribute to ηV,A in order
α2

s are shown in Fig. 1. They were calculated analytically
in [9], confirming the results of a Taylor series expansion
in (mb −mc)/mb [8] that had been obtained earlier by one
of the authors of [9]. In this paper, we present an indepen-
dent analytic calculation of ηV,A. Although our results are
expressed in a slightly different way, they are completely
equivalent to the results of [9]. Thus, we confirm the con-
clusions of [8,9].

Section 2 describes the main steps of the calculation.
Although the details are different, the methods we have
used are nevertheless related to the ones employed and
extensively discussed in [9]. The major part of the work is
the calculation of a set of scalar integrals, many of which
contain infrared divergences. One example is looked at
more closely, and various ways we checked our calculation
are discussed. The final results are presented in Sect. 3 and
are followed by our conclusions in Sect. 4. As a by-product
of our work, we developed a new version of a numerical
technique for evaluating a class of two-loop Feynman di-
agrams [10]. The new version is much more suitable for
dealing with some of the rather special diagrams that oc-
cur in this calculation. However, because the method itself
is quite general and may be useful for other problems as
well, it is explained briefly in an appendix.

2 Calculation of ηV,A

An important consequence of the zero recoil condition is
that there is no phase space available for gluon brems-
strahlung, b → cWg(g), and thus, only the virtual cor-
rections shown in Fig. 1 are needed. We calculate them
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Fig. 1. Irreducible Feynman diagrams con-
tributing to b → cW at order α2

s. The dotted
line in diagram e represents a Faddeev-Popov
ghost. The fermion in the loop in diagram f
can be either a light quark, a b or a c quark

in the Feynman gauge and use dimensional regularization
for both ultraviolet and infrared divergences. We neglect
the masses of all the light quarks, and we leave out the
diagram where a t quark loop is inserted into the gluon
propagator. With these restrictions, all diagrams can be
written in terms of the following nine propagator denom-
inators:

P1 = (l + k).(2p1 + l + k) , P3 = l.(2p1 + l) ,

P5 = k.(2p1 + k) , P7 = k2 , P9 = (l + k)2 ,

P2 = (l + k).(2p2 + l + k) , P4 = l.(2p2 + l) ,

P6 = k.(2p2 + k) , P8 = l2 , (1)

where k and l are loop momenta and p1 and p2 are the
four-momenta of the incoming b quark and the outgoing c
quark, respectively. Normally, seven of the denominators
Pi would be linearly independent, but because of the zero
recoil condition, which means that p1 and p2 are propor-
tional to each other, m2p1 = m1p2, we have two additional
linear relationships between them:

m1P4 − m2P3 = (m1 − m2)P8,

m1P6 − m2P5 = (m1 − m2)P7. (2)

This greatly simplifies the calculation.
After projecting the diagrams onto the form factors

ηV,A
1 and expressing all scalar products of k, l, p1 and p2

that appear in the numerators in terms of the Pi, which we
do using Form [11], we obtain for each one a combination
of scalar integrals of the form:

∫ ∫
ddk ddl

1
P ν1

1 P ν2
2 . . . P ν9

9
, (3)

where d = 4 − 2ε (some of the νi can be negative). The
scalar integrals that occur can be classified into three
groups. The first group consists of integrals that can be
factorized as a product of two one-loop integrals, e.g.:
∫ ∫

ddk ddl
1

P3P6P7P8
=

∫
ddl

1
P3P8

×
∫

ddk
1

P6P7
.

(4)
The second group consists of integrals in which either

ν2 = ν4 = ν6 = 0 or ν1 = ν3 = ν5 = 0, so that they
only depend on one mass scale. Such integrals also occur

1 In the case of ηA, we use an anticommuting γ5
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in on-shell fermion self-energies and in anomalous mag-
netic moments, and can be calculated using recurrence
relations based on integration by parts [12,13]. A detailed
explanation of the algorithm is given in [14].

The third group contains the non-factorizable graphs
that depend on m1 and on m2. Although one can still
derive relations between them using integration by parts,
those relations are more complicated than in the case of
just one mass scale. We find them to be quite useful in a
few cases, but are still left with rather a large number of
cases we have to calculate from scratch.

Before actually calculating the remaining integrals in
the third group, it is worth while to investigate their an-
alytic properties by solving the Landau equations. One
finds that they can have singularities when m1 = 0 or
m2 = 0. At m1 = m2 there are no singularities because,
although some poles in the propagators coincide at that
point, the integration contours are not pinched. However,
there may be singularities at m1 = m2 on the analytic
continuation to higher Riemann surfaces. The following
very simple one-loop example illustrates these properties:

∫
ddk

1
k.(2p1 + k) k.(2p2 + k)

= iπ2−ε Γ (1 + ε)

×
(

1
ε

+ 2 − 2
m1 log(m1) − m2 log(m2)

m1 − m2

)
(5)

If we analytically continue the right hand side of this
equation in, say, m2, going around the branch point at
m2 = 0 and then back to m2 = m1, log(m2) changes into
log(m2)+n(2πi), which no longer cancels log(m1), and as
a result, a pole appears at m1−m2 = 0. In addition to the
singularities just mentioned, a certain subclass of the two-
loop integrals (3) can also have singularities when they are
analytically continued to the point m1+m2 = 0. The inte-
grals in this subclass correspond to graphs that can be cut
into two pieces by removing exactly three massive quark
propagators. They only occur in diagrams c1, c2, and c3
in Fig. 1, and in diagram f , when the quark in the loop is
massive. While this discussion of analytic continuations to
negative masses and higher Riemann surfaces may seem
academic, keeping these properties in mind while actually
doing the integrations can be very helpful, because it tells
us which polylogarithms we can expect to occur in the
answer.

We have done most of the integrals needed using Feyn-
man parametric representations of the kind described in
[15]. Sometimes, it is convenient to differentiate a diagram
with respect to one (or both) of the masses first, in order
to reduce the number of different kinds of propagators,
and thus the number of Feynman parameters, and then
reintegrate with respect to the mass to get the final an-
swer. For the integration constant, we can take the equal
mass point, which belongs to the second group discussed
above. Another reason why we might want to differentiate
with respect to masses, is to make an integral less infrared
divergent.

I1 I2 I3

I4 I5 I6

Fig. 2. The scalar integrals I1 . . . I6. The momentum p1 enters
from the left, p2 − p1 enters at the vertex marked ⊗, p2 leaves
at the right. The thin (thick) lines symbolize quark propagators
with mass m1 (m2). The dotted lines denote massless propa-
gators. A line with a heavy dot on it means the corresponding
propagator is squared

Let us take the six-propagator integral

I1(m1, m2) =
∫ ∫

ddk ddl
1

P1P2P3P6P7P8
(6)

shown in Fig. 2 as an example. It is one of the contribu-
tions that come from diagram c2 in Fig. 1. This particular
integral has no ultraviolet divergence, but it does contain
an infrared divergence coming from the region where both
k and l are small. Our goal is to express it in terms of other
integrals in which one (or both) of the massless propaga-
tors P7 and P8 are cancelled. Let p1,2 = m1,2q where q is
a fixed four-vector with q2 = 1. First, consider differenti-
ation with respect to m2. Using the identities,

∂

∂m2

(
m2

P6

)
=

P7

P 2
6

(7)

∂

∂m2

(
m1 − m2

P2

)
= − P1

P 2
2

, (8)

we get

∂

∂m2
{(m1 − m2)m2I1(m1, m2)}

= (m1 − m2) I2(m1, m2) − m2I3(m1, m2) , (9)

where

I2(m1, m2) =
∫ ∫

ddk ddl
1

P1P2P3P 2
6 P8

, (10)

I3(m1, m2) =
∫ ∫

ddk ddl
1

P 2
2 P3P6P7P8

. (11)

The integral I2 is already finite, but it can be simplified
further by repeating the above procedure with m1 instead
of m2:

∂

∂m1
{(m2 − m1)m1I2(m1, m2)}

= (m2 − m1) I4(m1, m2) − m1I5(m1, m2) , (12)

I4(m1, m2) =
∫ ∫

ddk ddl
1

P1P2P 2
3 P 2

6
, (13)
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I5(m1, m2) =
∫ ∫

ddk ddl
1

P 2
1 P3P 2

6 P8
. (14)

On the other hand, I3 is still just as divergent as I1. How-
ever, since it no longer contains P1, it is now easy to cancel
P8:

∂

∂m1
{m1I3(m1, m2)} = I6(m1, m2)

=
∫ ∫

ddk ddl
1

P 2
2 P 2

3 P6P7
. (15)

From Fig. 2, it is obvious that I6(m1, m2) = I5(m2, m1).
Thus, in order to obtain the integral I1, all one needs
to know are the two finite, four-propagator integrals I4
and I5, which are relatively easy to do by Feynman para-
metrization, and, as an integration constant, the value of
I3(m, m), which can be calculated by recurrence relations.
Neglecting terms of order ε, we find

I3(m, m) = πdΓ 2(1 + ε)
m−4−4ε

4

{
1
ε

+ 3ζ(2) − 4
}

,(16)

I4(m1, m2) =
π4

8m2
1m

2
2

{
3ζ(2) − 2

u
(Li2 (u) − Li2 (−u))

+
u2 − 1

u
log

(
1 + u

1 − u

)}
, (17)

I5(m1, m2) =
π4

8m2
1m

2
2

{
2 − 2

u
− 3ζ(2) + 2Li2 (u)

−2Li2 (−u) +
1 − u2

u2 log
(

1 + u

1 − u

)}
, (18)

where the dimensionless variable u is defined as (m1 −
m2)/(m1 + m2), and, after performing the final integra-
tions over m1 and m2,

I1(m1, m2)

= πdΓ 2(1 + ε)
m−2ε

1 m−2ε
2

4m2
1m

2
2

{
1
ε

+ 3ζ(2) − 12 +
2
u

×
(

Li2 (u) − Li2 (−u) + log
(

1 + u

1 − u

))}
. (19)

It is comforting to see that the result is symmetric in m1
and m2, as it clearly should be.

We will not present formulae for all the non-factoriz-
able two-mass scalar integrals (3) that appear in the di-
agrams of Fig. 1, but mention that they can all be ex-
pressed in terms of the following basic set of logarithms
and polylogarithms:

log
(

1 + u

1 − u

)
, log (1 + u) , Li2 (u) , Li2 (−u) ,

Li2

(
2u

u + 1

)
,Li3

(
u

u + 1

)
, Li3

(
u

u − 1

)
,

Li3

(
2u

u + 1

)
, Li3

(
2u

u − 1

)
,

Li3

(
4u

(u + 1)2

)
, Li3

( −4u

(u − 1)2

)
. (20)

These functions are all real and analytic in the range
−1 < u < 1, which corresponds to real, positive masses
m1, m2. It is easy to verify that their only singularities
are located at u = ±1, and in some cases u = ∞, in ac-
cordance with the general properties inferred above from
the Landau equations. The functions that have branch
points at u = ∞ only occur in diagrams with massive
three-particle cuts, and the trilogarithms only occur in
five-propagator integrals.

We applied various checks on the results for the scalar
integrals. First of all, we evaluated the ones that are fi-
nite in d = 4 by direct numerical integration in momen-
tum space, basically by a straightforward extension of
the method originally proposed in [10] for the two-point
two-loop “master” diagram with general masses. However,
there are a few finite integrals that cannot easily be eval-
uated by this method, unless an important modification
is made, which is explained in the appendix. Then, there
are a number of “sunset” integrals, which we checked nu-
merically by means of dispersion relations [16], and a few
other two-point functions we compared with the program
package Xloops [17].

A simple analytical check that can be applied to all
two-mass integrals is to compare the first few terms of
their Taylor expansions in u with what one gets by ex-
panding the propagators around the equal mass point
(m1 = m2) under the integral sign (as was done from
the outset in [8]). While this is a powerful test, it is not
sensitive to possible mistakes in the integration constants
in diagrams calculated by differentiating and then reinte-
grating with respect to the masses. Therefore, for some
integrals, we also looked at their asymptotic behaviour
in the limit when m1 or m2 vanishes (u → ∓1). In this
limit, the diagrams are again reduced to one-scale inte-
grals, but it is more complicated than the equal mass limit
because, in general, the diagrams become more strongly
divergent when one of the masses vanishes. Nevertheless,
it is possible to obtain the correct asymptotic behaviour
by expanding under the integral sign, provided one adds
certain counterterms corresponding to the Taylor expan-
sion of certain subdiagrams of the diagram considered,
following the prescription for asymptotic expansions on
the mass shell given in [18].

To conclude this list of consistency checks, we mention
two tests that we applied to the contributions of complete
diagrams, rather than individual scalar integrals. We ver-
ified that if m1 and m2 are interchanged, diagrams a1 and
a2 in Fig. 1 are transformed into each other, and similarly
b1 ↔ b3, b2 ↔ b2, c1 ↔ c3, c2 ↔ c2, d ↔ d, e ↔ e and
f ↔ f . This is a consequence of charge conjugation sym-
metry. Secondly, by putting the masses of the two external
quarks equal to each other, we reproduced the two-loop
on-shell quark wave-function renormalization constants in
[13]. Except for one part — the contribution2 of a quark
loop whose mass is neither zero, nor equal to that of the
external quark line — which we calculated separately, we
could obtain all the wave-function renormalization factors

2 Equation (22) in [13]
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by simply substituting u = 0 in our formulae for contri-
butions to ηV .

3 Results

Here, we present our results for ηV,A up to O(α2
s) in QCD

with N colours and NL flavours of massless quarks, but
no t quarks. The colour factors are given by

CA = N, CF =
N2 − 1

2N
, TF =

1
2

. (21)

Following [8,9], we renormalize the strong coupling con-
stant in the MS scheme at the scale M =

√
mbmc but use

on-shell renormalization for the masses. This renormaliza-
tion procedure has the nice property that it respects the
symmetry under mb ↔ mc mentioned at the end of the
previous section. Therefore, ηV,A are even functions of the
variable:

u =
mb − mc

mb + mc
. (22)

This symmetry was exploited in [8] by using the variable
ρ = (mb − mc)2/(mbmc) = 4u2/(1 − u2) rather than δ =
(mb − mc)/mb = 2u/(1 + u) as an expansion parameter,
in order to obtain a more rapidly converging series.

It turns out that the trilogarithms Li3
(

u
u+1

)
and

Li3
(

u
u−1

)
, which appear in the contributions of diagrams

c1, c2 and c3, cancel out in the sum c1 +c2 +c3. The other
functions (20) appear in the following combinations:

` = log
(

1 + u

1 − u

)
(23)

L1 = Li2 (u) − Li2 (−u) (24)

L2 = Li2

(
2u

u + 1

)
+

1
4
`2 (25)

L3 = Li3

(
2u

u + 1

)
+ Li3

(
2u

u − 1

)

+
1
6
`3 +

2
3
` Li2

(
2u

u + 1

)
(26)

L4 = Li3

(
4u

(u + 1)2

)
+ Li3

( −4u

(u − 1)2

)

+
4
3
`3 +

16
3

` Li2

(
2u

u + 1

)

−ζ(2) (4 log(1 + u) − 2`)

−8
3
` (Li2 (u) − Li2 (−u)) . (27)

Note that `, L1 and L2 are odd functions of u, while L3
and L4 are even. The abbreviations a and z3 are defined
by

a =
αs(

√
mbmc)
4π

(28)

z3 = ζ(3) − 4 log(2) ζ(2) . (29)

Finally, the results are

ηV = 1 + aCF

(
`

3
u

− 6
)

+a2
[
CF TF NL

{
`

(− 2
3 )

u
+

4
3

}

+CF TF

{
ζ(2)

(−104u2 + 464u4 + 1144u6 + 32u8)
(u2 − 1)4

+`
(− 64

3 + 200
3 u2 + 344

3 u4)
u(u2 − 1)2

+`2
(−16 + 224u2 + 896u4 + 416u6 + 16u8)

(u2 − 1)4

+L1
(−32 + 128u2 + 1616u4 + 1312u6 + 48u8)

u(u2 − 1)4

+L2
32 − 128u2 − 2368u4 − 3200u6 − 480u8

u(u2 − 1)4

+
128
3 + 296

3 u2 + 344
3 u4

(u2 − 1)2

}

+C2
F

{
ζ(2) `

(−16)
u

+ ζ(2)
(−32 + 48u2)

u2 − 1

+`
(− 89

6 )
u

+ `2
3 − 9

2u2 + 11
2 u4

u2(u2 − 1)

+L2
(−16)

u(u2 − 1)
+ L3

24 − 96u2

u2 +
53
3

}

+CF (CA − 2CF )
{

ζ(2) `
(−8u)
u2 − 1

+ζ(2)
10u2

u2 − 1
+ `

17
6

u
+ `2

2 + 2u2

u2 − 1

+L1
4u

u2 − 1
+ L2

(−16u)
u2 − 1

− 24L3

+L4
12 − 6u2

u2 − 1
+ z3

(−6u2)
u2 − 1

− 17
3

}]
(30)

and

ηA = 1 + aCF

(
`

3
u

− 8
)

+a2
[
CF TF NL

{
`

(− 10
3 )

u
+

88
9

}
+ CF TF

{
ζ(2)

× (−64 − 88
3 u2 + 2512

3 u4 + 2312
3 u6 + 64

3 u8)
(u2 − 1)4

+`
(− 16

3 + 120u2 + 136
3 u4)

u(u2 − 1)2

+`2
64
3 + 1120

3 u2 + 2464
3 u4 + 928

3 u6 + 32
3 u8

(u2 − 1)4

+L1
(− 32

3 + 1472
3 u2 + 4528

3 u4 + 3104
3 u6 + 48u8)

u(u2 − 1)4

+L2

32
3 − 1664

3 u2 − 8000
3 u4 − 7808

3 u6 − 992
3 u8

u(u2 − 1)4
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+
1016

9 + 584
9 u2 + 704

9 u4

(u2 − 1)2

}

+C2
F

{
ζ(2) `

(−16)
u

+ ζ(2)
(−48 + 160

3 u2)
u2 − 1

+`
(− 53

6 )
u

+ `2
(− 4

3 − 5
2u2 + 31

6 u4)
u2(u2 − 1)

+L2

16
3 − 32

3 u2

u(u2 − 1)
+ L3

(−8 − 64u2)
u2 − 190

9

}

+CF (CA − 2CF )
{

ζ(2) `
32
3 − 56

3 u2

u(u2 − 1)

+ζ(2)
40
3 − 46

3 u2 + 70
3 u4

(u2 − 1)2
+ `

61
6

u

+`2
(− 2

3 + 28
3 u2 + 26

3 u4 + 4u6)
u2(u2 − 1)2

+L1

32
3 + 52

3 u2 + 44
3 u4

u(u2 − 1)2

+L2
(− 32

3 − 112
3 u2 − 112

3 u4)
u(u2 − 1)2

− 24L3

+L4
4 + 2u2

u2 − 1
+ z3

4 − 10u2

u2 − 1
− 302

9

}]
. (31)

Note that every single term in the expressions (30) and
(31) is manifestly analytic in u for at least |u| < 1. This
fact, combined with the symmetry u ↔ −u, proves (once
more) that ηV,A can be represented by convergent power
series in u2 for all finite positive values of mb and mc.

4 Conclusion

We have performed an independent calculation of the vec-
tor and axial vector form factors ηV and ηA that describe
the decay of a b quark into a c quark at zero recoil up
to order α2

s. We have compared our expressions (30) and
(31) with the corresponding formulae in [9] by rewriting
the latter in terms of the functions (20) used in this pa-
per, and found that the two calculations are in perfect
agreement. Both confirm the series expansion in the mass
difference mb − mc obtained earlier in [8].

The actual numerical values of mb and mc are such
that a few terms of the series expansion are already suf-
ficient to achieve the accuracy that is needed in practice
(u2 ≈ 0.29). On the other hand, the exact analytical for-
mulae are not only valid for b → c decays, but also for
other cases, such as t → b, where the mass ratio is larger,
and the series expansion converges more slowly. They also
allow one to study the limit when one of the quark masses
goes to zero, which is impossible if only a limited number
of terms of an expansion in the mass difference are known.

In the appendix, we have identified the cause of a nu-
merical difficulty that arises when the two-dimensional nu-
merical integration method of [10] is applied to certain
two-loop diagrams with several coinciding thresholds, and
suggested an alternative method that solves the problem.

-2m1 -2m2

α
β

Fig. 3. Singularities in the complex k0-plane originating from
the quark propagators P5 and P6 (⊗), and from the gluon
propagator P7 (�). While the integration contour can always
be rotated away from the real axis by an angle α, it can only
be shifted away from the origin in diagrams not containing the
gluon propagator P7
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Appendix

In this appendix, some details of the numerical integra-
tion methods we used to check the scalar two-loop inte-
grals appearing in this work are given. We restrict our-
selves to cases that are both ultraviolet and infrared finite
in d = 4. Basically, we follow the approach proposed in
[10] for the numerical integration of the scalar two-point
two-loop master diagram with general masses. The fact
that the diagrams occurring here are three-point diagrams
is not a problem: since the external momenta p1 and p2
are proportional to each other, they have a common rest
frame, and all the steps in the derivation of the integral
representation given in [10] can be repeated with only a
few trivial changes in the formulae. However, the fact that
p1 and p2 are on their respective mass shells does give rise
to some difficulties, which we discuss here.

By writing the loop momenta k and l in the common
rest frame of p1 and p2 as (k0,k⊥), (l0, l⊥), and integrating
out their space components k⊥, l⊥, we obtain representa-
tions of the form∫ ∞

−∞

∫ ∞

−∞
dk0 dl0 F (k0, l0; ρ) (32)

for the scalar integrals (3). Here, we have explicitly indi-
cated the dependence on the small imaginary quantity iρ
which is added to all propagator denominators in accor-
dance with the causal prescription. As a function of the
complex variable k0, the integrand F (k0, l0; ρ) has singu-
larities (branch points) located at the positions shown in
Fig. 3. Identical pictures can be drawn for the complex
variable l0 and for the combination k0 + l0. When the
limit ρ → 0 is taken, the singularities move onto the real
k0 and l0 axes. In general, this makes the integrals along
the real axes more difficult to evaluate numerically and in
some cases even divergent. Sometimes, for example when
the scalar integral under consideration does not contain ei-
ther of the gluon propagators P7 and P9, the problem can
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be solved by rotating the integration contours away from
the real axes by an angle α (which must be the same for k0
and l0), l0 → eiαl0, k0 → eiαk0, and subsequently shifting
(one of) them away from the origin, eiαk0 → eiαk0 −β, as
shown in Fig. 3. Scalar integrals we checked in this way
include I2 in Fig. 2 and

∫ ∫
d4k d4l/(P1P3P

3
6 P8).

This escape is not possible in diagrams where both
the k0 and l0 contours are trapped at the origin by gluon
propagators, such as, e.g.,

∫ ∫
d4k d4l

1
P1P3P6P7P8

. (33)

We stress that if the limit ρ → 0 is taken after all inte-
grations have been performed, one obtains a finite result
for the integral (33)3. However, one would like to set ρ
to zero, or at least, very close to zero, before performing
the k0 and l0 integrations in (32), and, if one attempts to
do so, a non-integrable singularity appears at the point
k0 = l0 = 0. More specifically, F (λk0, λl0; ρ = 0) ∼ 1/λ2

as λ → 0. In the original integral (33), this logarithmic
divergence comes from the region where k⊥ and l⊥ tend
to zero, while k0 and l0 are of order k2

⊥, l2⊥, as one can see
by rescaling

k⊥ → λk⊥ , l⊥ → λl⊥ , k0 → λ2k0 , l0 → λ2l0 . (34)

Under this transformation, the integration measure in (33)
scales like λ10, while, for small λ, the integrand goes like
1/λ10.

The problem can be solved very easily by interchanging
the order of the integrations. That is, we first perform
the k0, l0 and all angular integrations analytically, leaving
two integrations over k⊥ = |k⊥| and l⊥ = |l⊥| to be done
numerically.

Below, we shall give an explicit formula for the result-
ing integrand. Although our main reason for deriving it
was the need for an independent check on our analytic
results for (33) and a few other, equally nasty cases, the
formula is valid for a much more general diagram:

J =
∫ ∫

d4k d4l
1

D1D2D3D4D5
, (35)

where

D1 = (k + p1)2 − m2
1 + iρ

D2 = (k + p2)2 − m2
2 + iρ

D3 = (k + l + p3)2 − m2
3 + iρ

D4 = (l + p4)2 − m2
4 + iρ

D5 = (l + p5)2 − m2
5 + iρ . (36)

with the restriction that all momenta pi are proportional
to one another. Apart from that, the pi and the masses mi

are arbitrary. Depending on the choice of the pi, (35) then

3 In the case of equal masses m1 = m2, it reduces to the
one difficult one-scale integral N(1, 1, 1, 1, 1) = 6 ζ(2) log(2) −
3
2 ζ(3) needed in two-loop QCD or QED corrections to on-shell
fermion propagators [19]

corresponds to a diagram with two, three or four external
legs. We use this notation for the sake of flexibility, even
though it has some redundancy (which could be used, for
example, to set p2 = p5 = 0). Working in the rest frame
of the momenta pi, we find the following representation:

J = 4π4
∫ ∞

0
dk⊥

∫ ∞

0
dl⊥k⊥l⊥

×
{

1
u1u4

(
F+

3 (u1 − p0
1 + u4 − p0

4)
C+

12C
+
45

+
F−

3 (−u1 − p0
1 − u4 − p0

4)
C−

12C
−
45

)

+(1 ↔ 2) + (4 ↔ 5) + (1 ↔ 2, 4 ↔ 5)
}

, (37)

with

F±
3 (x) = log

(
x + p0

3 ± u+
3

x + p0
3 ± u−

3

)
, (38)

C±
ij = (±ui − p0

i + p0
j )

2 − u2
j , (39)

and

u1 =
√

m2
1 + k2

⊥ − iρ u4 =
√

m2
4 + l2⊥ − iρ

u2 =
√

m2
2 + k2

⊥ − iρ u5 =
√

m2
5 + l2⊥ − iρ

u±
3 =

√
m2

3 + (k⊥ ± l⊥)2 − iρ . (40)

The representation (37) can be applied directly as it stands
to the case (33). In general though, there will be poles
near the real axes at the points where the C±

ij vanish.
They can easily be avoided by a rotation of the contours:
l⊥ → e−iαl⊥, k⊥ → e−iαk⊥.
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